ヤフオク!における機械学習 ~深層学習、分散表現~ #devsumi

>100 Views

February 25, 16

スライド概要

Developers Summit 2016 Yahoo! JAPAN Tech Conference
http://event.shoeisha.jp/devsumi/20160218/tokusetsu

【18-A-6】16:20~17:05【第1部】
Yahoo! JAPANを支えるデータテクノロジー ~機械学習、クラウド分散システム処理モデル~
『ヤフオク!における機械学習 ~深層学習、分散表現~』
ヤフオク!カンパニーヤフオク!開発本部 サイエンス部 サイエンス
山下 勝司

profile-image

エンジニア・デザイナー向けのヤフー公式アカウント。イベント/登壇情報/ブログ記事など、ヤフーの技術・デザインに関わる情報を発信します。

シェア

埋め込む »CMSなどでJSが使えない場合

各ページのテキスト
1.

ヤフオク!における機械学習 〜深層学習、分散表現〜 ⼭下 勝司(やまかつ) 2016/2/18 ヤフオク!カンパニー ヤフオク!開発本部 サイエンス部サイエンス

2.

⾃⼰紹介 本名: ⼭下 勝司 通称: やまかつ 2015年1⽉中途⼊社 ヤフオク!カンパニー所属 ヤフオク!の機械学習周りを担当 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

3.

ヤフオク!について ※1: 2015年6月実績 ※2: 2015年6月22日実績 ※3: Nielsen NetView(家庭および職場からのPCによるアクセス。アプリは除く)Nielsen Mobile NetView(Android+iOS / アプリいずれも含む) 2015/04「訪問者数」データ、「オークション」サブカテゴリ Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

4.

ヤフオク!について サービス開始:1999年 ※1: 2015年6月実績 ※2: 2015年6月22日実績 ※3: Nielsen NetView(家庭および職場からのPCによるアクセス。アプリは除く)Nielsen Mobile NetView(Android+iOS / アプリいずれも含む) 2015/04「訪問者数」データ、「オークション」サブカテゴリ Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

5.

ヤフオク!について サービス開始:1999年 ⽇本最⼤級の インターネットオークションサイト ※1: 2015年6月実績 ※2: 2015年6月22日実績 ※3: Nielsen NetView(家庭および職場からのPCによるアクセス。アプリは除く)Nielsen Mobile NetView(Android+iOS / アプリいずれも含む) 2015/04「訪問者数」データ、「オークション」サブカテゴリ Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

6.

ヤフオク!について サービス開始:1999年 ⽇本最⼤級の インターネットオークションサイト 出品数:常時約3900万個※1 ※1: 2015年6月実績 ※2: 2015年6月22日実績 ※3: Nielsen NetView(家庭および職場からのPCによるアクセス。アプリは除く)Nielsen Mobile NetView(Android+iOS / アプリいずれも含む) 2015/04「訪問者数」データ、「オークション」サブカテゴリ Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

7.

ヤフオク!について サービス開始:1999年 ⽇本最⼤級の インターネットオークションサイト 出品数:常時約3900万個※1 1秒あたり273個※2 ※1: 2015年6月実績 ※2: 2015年6月22日実績 ※3: Nielsen NetView(家庭および職場からのPCによるアクセス。アプリは除く)Nielsen Mobile NetView(Android+iOS / アプリいずれも含む) 2015/04「訪問者数」データ、「オークション」サブカテゴリ Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

8.

ヤフオク!について サービス開始:1999年 ⽇本最⼤級の インターネットオークションサイト 出品数:常時約3900万個※1 1秒あたり273個※2 ユーザ数(PC):約1671万⼈※3 ※1: 2015年6月実績 ※2: 2015年6月22日実績 ※3: Nielsen NetView(家庭および職場からのPCによるアクセス。アプリは除く)Nielsen Mobile NetView(Android+iOS / アプリいずれも含む) 2015/04「訪問者数」データ、「オークション」サブカテゴリ Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

9.

ヤフオク!について サービス開始:1999年 ⽇本最⼤級の インターネットオークションサイト 出品数:常時約3900万個※1 1秒あたり273個※2 ユーザ数(PC):約1671万⼈※3 ユーザ数(SP):約1117万⼈※3 ※1: 2015年6月実績 ※2: 2015年6月22日実績 ※3: Nielsen NetView(家庭および職場からのPCによるアクセス。アプリは除く)Nielsen Mobile NetView(Android+iOS / アプリいずれも含む) 2015/04「訪問者数」データ、「オークション」サブカテゴリ Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

10.

アジェンダ • ヤフオク!における深層学習を利⽤した 画像処理のご紹介 • ヤフオク!における分散表現を利⽤した 検索ランキングのご紹介 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

11.

アジェンダ • ヤフオク!における深層学習を利⽤した 画像処理のご紹介 • ヤフオク!における分散表現を利⽤した 検索ランキングのご紹介 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

12.

解決したい課題 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

13.

解決したい課題 MacBook Air Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

14.

解決したい課題 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

15.

解決したい課題 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

16.

解決したい課題 カテゴリ違い Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

17.

カテゴリ違い ⼊札ユーザ 「折⾓、カテゴリを絞って検索したのに、 関係ない商品が…」 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

18.

カテゴリ違い ⼊札ユーザ 「折⾓、カテゴリを絞って検索したのに、 関係ない商品が…」 ユーザビリティの低下 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

19.

カテゴリ違い ⼊札ユーザ 「折⾓、カテゴリを絞って検索したのに、 関係ない商品が…」 カテゴリ違いを検知! Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

20.

カテゴリ違いの検知 ⼈による検知 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

21.

カテゴリ違いの検知 ⼈による検知 ・⾼い精度 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

22.

カテゴリ違いの検知 ⼈による検知 ・⾼い精度 しかし限界も Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

23.

カテゴリ違いの検知 ⼈による検知 ・⾼い精度 しかし限界も ・量 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

24.

カテゴリ違いの検知 ⼈による検知 ・⾼い精度 しかし限界も ・量 ・スピード Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

25.

カテゴリ違いの検知 ⼈による検知 ・⾼い精度 しかし限界も ・量 ・スピード 機械学習の利⽤ Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

26.

カテゴリ違いの検知 機械学習にも限界が Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

27.

カテゴリ違いの検知 機械学習にも限界が ・未知のパターン Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

28.

カテゴリ違いの検知 機械学習にも限界が ・未知のパターン ・100%の精度は難しい Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

29.

カテゴリ違いの検知 機械学習にも限界が ・未知のパターン ・100%の精度は難しい など Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

30.

カテゴリ違いの検知 機械学習にも限界が ・未知のパターン ・100%の精度は難しい など 機械学習は銀の弾丸ではない Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

31.

カテゴリ違いの検知 ⼈と機械学習のハイブリッド Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

32.

カテゴリ違いの検知 ⼈と機械学習のハイブリッド ・⼈:判断 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

33.

カテゴリ違いの検知 ⼈と機械学習のハイブリッド ・⼈:判断 ・機械学習:⼈が判断する順序を決定 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

34.

カテゴリ違いの検知 ⼈と機械学習のハイブリッド ・⼈:判断 ・機械学習:⼈が判断する順序を決定 メリットの両⽴ ・⼈:⾼い精度 ・機械学習:量とスピード Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

35.

カテゴリ違いの検知モデル Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

36.

カテゴリ違いの検知モデル 商品タイトルベース Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

37.

カテゴリ違いの検知モデル 商品タイトルベース ex. MacBook Air カテゴリへの出品 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

38.

カテゴリ違いの検知モデル 商品タイトルベース ex. MacBook Air カテゴリへの出品 「MacBook Air ⽤カバー」 「MacBook Air カバー」 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

39.

カテゴリ違いの検知モデル 商品タイトルベース ex. MacBook Air カテゴリへの出品 「MacBook Air ⽤カバー」 → ✕ 「MacBook Air カバー」 → ✕ Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

40.

カテゴリ違いの検知モデル 商品タイトルベース ex. MacBook Air カテゴリへの出品 「MacBook Air ⽤カバー」 → ✕ 「MacBook Air カバー」 → ✕ 「MacBook Air + カバー」 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

41.

カテゴリ違いの検知モデル 商品タイトルベース ex. MacBook Air カテゴリへの出品 「MacBook Air ⽤カバー」 → ✕ 「MacBook Air カバー」 → ✕ 「MacBook Air + カバー」 → ◯ Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

42.

カテゴリ違いの検知モデル 商品タイトルベース ex. MacBook Air カテゴリへの出品 「MacBook Air ⽤カバー」 → ✕ 「MacBook Air カバー」 → ✕ 「MacBook Air + カバー」 → ◯ 「MacBook Air おまけ付 カバー」 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

43.

カテゴリ違いの検知モデル 商品タイトルベース ex. MacBook Air カテゴリへの出品 「MacBook Air ⽤カバー」 → ✕ 「MacBook Air カバー」 → ✕ 「MacBook Air + カバー」 → ◯ 「MacBook Air おまけ付 カバー」 → ? Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

44.

カテゴリ違いの検知モデル 商品タイトルベース ex. MacBook Air カテゴリへの出品 「MacBook Air ⽤カバー」 → ✕ 「MacBook Air カバー」 → ✕ 「MacBook Air + カバー」 → ◯ 「MacBook Air おまけ付 カバー」 → ? ⼀定の精度はあるものの、限界も Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

45.

カテゴリ違いの検知モデル 単語に加え、画像も利⽤ Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

46.

カテゴリ違いの検知モデル 単語に加え、画像も利⽤ 例:MacBook Air カテゴリ Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

47.

カテゴリ違いの検知モデル 単語に加え、画像も利⽤ 例:MacBook Air カテゴリ ◯ ✕ ✕ Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

48.

カテゴリ違いの検知モデル 画像に写っている物体を認識 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

49.

カテゴリ違いの検知モデル 画像に写っている物体を認識 深層学習(Deep Learning)を利⽤ Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

50.

深層学習の代表的⼿法 CNN(Convolutional Neural Network) RNN(Recurrent Neural Network) RNN(Recursive Neural Network) DBN(Deep Belief Network) DBM(Deep Boltzmann Network) DAE(Deep Autoencorder) at el. Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

51.

深層学習の代表的⼿法 CNN(Convolutional Neural Network) RNN(Recurrent Neural Network) RNN(Recursive Neural Network) DBN(Deep Belief Network) DBM(Deep Boltzmann Network) DAE(Deep Autoencorder) at el. Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

52.

CNNによる物体認識 画像に写っている物体を識別 Going deeper with convolutions (http://arxiv.org/pdf/1409.4842v1.pdf)より引⽤ Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

53.

CNNによる物体認識 画像に写っている物体を識別 シベリアンハスキー エスキーモドッグ Going deeper with convolutions (http://arxiv.org/pdf/1409.4842v1.pdf)より引⽤ Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

54.

学習 学習データ ヤフオク!の過去の出品画像 約2万件 環境 ・Caffe v1.0rc2 ・CUDA 7.5 ・GPUサーバ(オンプレ) Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

55.

識別 ノートPCである確率を出⼒ Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

56.

識別 ノートPCである確率を出⼒ 80.1% 0.1% 0.9% Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

57.

⽬視チェックの順序(イメージ) 80.1% 0.1% 0.9% Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

58.

⽬視チェックの順序(イメージ) ① ③ ② ※実際には商品タイトル等の他の特徴を考慮 80.1% 0.1% 0.9% Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

59.

今後 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

60.

今後 学習データを⾼精度、⼤量、継続的に 増加させる仕組み Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

61.

今後 学習データを⾼精度、⼤量、継続的に 増加させる仕組み ラベル付け:⾼コスト Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

62.

今後 学習データを⾼精度、⼤量、継続的に 増加させる仕組み ラベル付け:⾼コスト 精度の向上 新しいパターンへの対応 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

63.

アジェンダ • ヤフオク!における深層学習を利⽤した 画像処理のご紹介 • ヤフオク!における分散表現を利⽤した 検索ランキングのご紹介 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

64.

ヤフオク! サイト内検索 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

65.

ヤフオク! サイト内検索 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

66.

ヤフオク! サイト内検索 機械学習によるランキング Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

67.

検索ランキング CTRやCVR等を最⼤化するモデル CTR:商品詳細画⾯へ流⼊する確率 CVR:その後に⼊札する確率 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

68.

検索ランキング 多くの特徴を利⽤ Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

69.

検索ランキング 多くの特徴を利⽤ 重要な特徴の1つが単語 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

70.

検索ランキング 多くの特徴を利⽤ 重要な特徴の1つが単語 特にタイトル中の単語 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

71.

検索ランキング 多くの特徴を利⽤ 重要な特徴の1つが単語 特にタイトル中の単語 「MacBook Air」 「MacBook Air カバー」 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

72.

単語の利⽤ 単語を特徴に利⽤した場合の課題 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

73.

単語の利⽤ 単語を特徴に利⽤した場合の課題 表記ゆれ、同義語 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

74.

単語の利⽤ 単語を特徴に利⽤した場合の課題 表記ゆれ、同義語 ⼀般的な対応 ・正規化 ⼩⽂字⼤⽂字、半⾓全⾓、記号等 ・同義語辞書 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

75.

単語の利⽤ 同義語辞書の整備:⼈⼿ Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

76.

単語の利⽤ 同義語辞書の整備:⼈⼿ ・コスト Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

77.

単語の利⽤ 同義語辞書の整備:⼈⼿ ・コスト ヤフオク!の商品ドメイン:多 ・服、本、スマホから⾃動⾞、家まで Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

78.

単語の利⽤ 同義語辞書の整備:⼈⼿ ・コスト ヤフオク!の商品ドメイン:多 ・服、本、スマホから⾃動⾞、家まで コストやばい Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

79.

単語の利⽤ 同義語辞書の整備:⼈⼿ ・コスト ヤフオク!の商品ドメイン:多 ・服、本、スマホから⾃動⾞、家まで 計算で求めたい Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

80.

単語の利⽤ 同義語辞書の整備:⼈⼿ ・コスト ヤフオク!の商品ドメイン:多 ・服、本、スマホから⾃動⾞、家まで 分散表現を利⽤ Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

81.

分散表現 局所表現 分散表現 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

82.

分散表現 局所表現 サッカー: (1,0,0,0 … 0,0,0,0) フットボール: (0,0,0,0 … 0,1,0,0) 分散表現 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

83.

分散表現 局所表現 サッカー: (1,0,0,0 … 0,0,0,0) フットボール: (0,0,0,0 … 0,1,0,0) ベクトルは単純なエンコード 分散表現 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

84.

分散表現 局所表現 サッカー: (1,0,0,0 … 0,0,0,0) フットボール: (0,0,0,0 … 0,1,0,0) ベクトルは単純なエンコード 分散表現 サッカー: (0.13, -0.32, … 0.1, 0.07) フットボール: (0.11, -0.27, … 0.13, 0.07) Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

85.

分散表現 局所表現 サッカー: (1,0,0,0 … 0,0,0,0) フットボール: (0,0,0,0 … 0,1,0,0) ベクトルは単純なエンコード 分散表現 サッカー: (0.13, -0.32, … 0.1, 0.07) フットボール: (0.11, -0.27, … 0.13, 0.07) 意味が近い表現:近いベクトル Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

86.

単語の分散表現 意味が近い単語:ベクトルが近い単語 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

87.

単語の分散表現 意味が近い単語:ベクトルが近い単語 クラスタリング Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

88.

単語の分散表現 意味が近い単語:ベクトルが近い単語 クラスタリング 意味が近い単語群:同⼀クラスタ Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

89.

単語の分散表現 意味が近い単語:ベクトルが近い単語 クラスタリング 意味が近い単語群:同⼀クラスタ 検索ランキングのモデルの特徴 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

90.

単語の分散表現 意味が近い単語:ベクトルが近い単語 クラスタリング 意味が近い単語群:同⼀クラスタ 検索ランキングのモデルの特徴 ・単語 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

91.

単語の分散表現 意味が近い単語:ベクトルが近い単語 クラスタリング 意味が近い単語群:同⼀クラスタ 検索ランキングのモデルの特徴 ・単語 ・クラスタID Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

92.

分散表現の学習 学習コーパス ・商品タイトル ・商品数:約5000万件(重複除外) ・単語数:約3億8000万 ・Vocabulary:約40万 モデル: skip-gram (+negative sampling) Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

93.

クラスタリング モデル:k-means(k-means++) 距離:コサイン類似度 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

94.

⽣成されたクラスタの例 クラスタ例1: ザク, ドム, グフ, ゲルググ, ズゴック, … Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

95.

⽣成されたクラスタの例 クラスタ例1: ザク, ドム, グフ, ゲルググ, ズゴック, … クラスタ例2: アイパッド, iPad, iPadmini, Air, … Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

96.

⽣成されたクラスタの例 クラスタ例1: ザク, ドム, グフ, ゲルググ, ズゴック, … クラスタ例2: アイパッド, iPad, iPadmini, Air, … Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

97.

商品タイトルの置き換え クラスタ例1:ザク, ドム, グフ, ゲルググ, … Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

98.

商品タイトルの置き換え クラスタ例1:ザク, ドム, グフ, ゲルググ, … 中古 HY2M 1/12 ザク MS-06J ZAKUII ↓ 中古 HY2M 1/12 cid_1 MS-06J ZAKUII Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

99.

商品タイトルの置き換え クラスタ例1:ザク, ドム, グフ, ゲルググ, … 中古 HY2M 1/12 ザク MS-06J ZAKUII ↓ 中古 HY2M 1/12 cid_1 MS-06J ZAKUII ガンプラ MG1/100 MS-09 ドム ↓ ガンプラ MG1/100 MS-09 cid_1 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

100.

今後 skip-gram以降の分散表現のモデルを 利⽤ Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

101.

今後 skip-gram以降の分散表現のモデルを 利⽤ 重複タイトルの判断精度 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

102.

今後 skip-gram以降の分散表現のモデルを 利⽤ 重複タイトルの判断精度 クラスタリング精度 ex. ディリクレ過程混合正規分布 Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

103.

ご静聴有難うございました Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌

104.

Copyright (C) 2016 Yahoo Japan Corporation. All Rights Reserved. 無断引⽤・転載禁⽌