交通情報学特論 第1回「交通情報学入門」講師:伊藤昌毅

1.2K Views

August 30, 23

スライド概要

動画: https://www.youtube.com/watch?v=sTkIIJ1nXr4

2023年度に伊藤昌毅が東京大学で実施した講義「交通情報学特論」を一部を除いて一般公開します。

この講義は、情報技術との融合によって高度化が進んでいる交通関連技術について概観し、交通データ分析や交通シミュレーション、交通案内サービス構築に必要な技術を身に付けることを目的としています。交通工学や交通計画学など交通を支える技術や学問は、現代の情報技術と融合することで、リアルタイムに大量のデータを分析し、即応的に施策を実施する新しい形へと進化しはじめています。この講義では、交通データの収集、可視化、分析、社会システムへの応用について、最新の事例や研究成果を紹介するとともに、実際の交通データに触れながらプログラミングやデータ分析ツールの利用技術を学びます。交通を学ぶ学生だけでなく、交通に関わる社会人にも有益であると考え、学生とのディスカッションなどを除き講義内容を広く公開します。

profile-image

伊藤昌毅 東京大学 大学院情報理工学系研究科 附属ソーシャルICT研究センター 准教授。ITによる交通の高度化を研究しています。標準的なバス情報フォーマット広め隊/日本バス情報協会

シェア

埋め込む »CMSなどでJSが使えない場合

関連スライド

各ページのテキスト
1.

東京大学 大学院情報理工学系研究科 創造情報学専攻 「交通情報学特論」 第1回 2023年4月5日 弥生キャンパス I-REF棟 Hilobby 交通情報学入門 東京大学 大学院情報理工学系研究科 附属ソーシャルICT研究センター 創造情報学専攻兼担 伊藤昌毅

2.

伊藤 昌毅 • • • • • 東京大学 大学院情報理工学系研究科 附属ソーシャルICT研究センター 准教授 静岡大学 土木情報学研究所 客員教授 専門分野 – – ユビキタスコンピューティング 交通情報学 – – – – – – – – 静岡県掛川市出身 2002 慶應義塾大学 環境情報学部卒 2009 博士(政策・メディア) 指導教員: 慶應義塾大学 徳田英幸教授 2008-2010 慶應義塾大学大学院 政策・メディア研究科 特別研究助教 2010-2013 鳥取大学 大学院工学研究科 助教 2013-2019 東京大学 生産技術研究所 助教 2019-2021 東京大学 生産技術研究所 特任講師 2021-現在 現職 – 運行管理者(旅客) 経歴 資格 2

3.

2010年〜2013年 バスネット: 鳥取大学発 バス・鉄道乗換案内 の開発 • 年間4万人を超えるユニークユーザ • 年間30万件を超える検索数 • 総務大臣賞 産学官連携功労者表彰,平成21年 • 総務大臣表彰 U-Japan大賞 地域活性化部門賞, 平成20年 • ほか受賞多数

5.

バスネット利用者の行動分析 • Webやアプリの利用データのビックデータ分析から、公共交通 への需要を明らかに 出発地設定 目的地 イオン鳥取北 (バス停) 鳥取駅 (バス停) 県庁日赤前 (バス停) イオン鳥取北 (バス停) 鳥取砂丘 (バス停) 500 450 400 350 300 250 利用数 順位 出発地 鳥取駅 1 (バス停) イオン鳥取北 2 (バス停) 鳥取駅 3 (バス停) 鳥商前 4 (バス停) 鳥取駅 5 (バス停) 目的地設定 200 150 100 50 0 0 2 4 6 8 10 12 14 16 時間帯 h 鳥取駅バス停 区間ごとの需要 地域別の需要分布 バス停ごとの乗降パターン 18 20 22 24

6.

アクセスログ解析システムの開発 • 直感的な解析を実現するWebインタフェースの開発 – Hadoopを使った分散処理でデータ解析を高速に実現 – 総務省戦略的情報通信研究開発推進制度(SCOPE)地域ICT新興型研究開発に採 択

7.

東京大学大学院情報理工学系研究科附属ソー シャルICT研究センター

8.

知能社会国際卓越大学院プログラム(IIW) • 募集説明会 4月10日(月) 17:00〜 – 2022年10月及び2023年4月に修士1年に進学 – 2022年10月及び2023年4月に博士後期課程1年に進学 – 2022年10月及び2023年4月に博士後期課程2年に進学

10.

履修学生の確認 • 大学、研究科、専攻、人数

11.

モビリティは100年に一度の大変革の時代

12.

ビジネス誌でも多くの特集 2018年3月5日号 2018年9月号 2019年4月29日号 2019年7月30日号

13.

モビリティ革命の背景 • 情報技術の発達 – スマートフォン: 誰もが常時繋がる世界を達成 – IoT: 全てのモノ(車や電車、バス等も含む)も常時繋がる – AI・機械学習: 大量のデータに基づき人間以上の知的アウトプット • カーボンニュートラル – 温室効果ガスの排出量と吸収量を均衡 – 気候変動を抑制して持続可能な社会を作る

14.

車両目線で次のモビリティを考えるなら CASE

15.

CASE: 自動車産業が見据えている方向性 • C: Connected – 通信・ネットワーク化 • A: Autonomous – 自動運転 • S: Shared and Services – サービス化 • E: Electric – 電動化 • 2016年にダイムラーが提唱・一企業に留まらない自動車産業の方向性を示 すキーワードとなる https://www.daimler.com/innovation/case-2.html

16.

TESLA • イーロンマスク氏による電気自動車ベン チャー企業 – 2003年創業 • 自動運転に対応したハードウェアを標準 装備 – カメラや超音波、レーダーなどで周辺を認識 – オートパイロット機能を提供 – 現在は完全な自動運転ではないが、将来は完全自 動運転に対応? – ソフトウェアアップデートで機能追加 • 利用者の運転行動を通してアルゴリズム を進化 • Webでカスタマイズ・オーダー https://ja.wikipedia.org/wiki/テスラ・モデル3

17.

https://response.jp/article/2019/02/28/319596.html

18.

• xx トヨタの求人広告が話題に(2017年) https://adgang.jp/2017/10/151302.html

19.

A: Autonomous

20.

自動運転は いつ実現するか?

21.

• x http://www.mlit.go.jp/common/001226541.pdf

22.

各社の実験も活発に • カリフォルニア州車両管 理局(DMV)が公開した 自律走行車の開発企業各 社による試験状況より • ウェイモ(Google)、 Uber、AppleなどIT企業 も実験中 https://wired.jp/2019/02/26/new-robo-car-report-card/

23.

2020年!? • テスラは2020年に「完 全な自動運転」を実現 する – オートパイロット機能 – スマートサモン機能 https://wired.jp/2019/02/25/tesla-full-self-driving-promise/

24.

CES 2019 トヨタ・リサーチ・インスティテュート (TRI)ギル・プラットCEOスピーチ • レベル5の自動運転とは、いつどこで どんな環境でも、ドライバーなしで自 動運転が可能なシステムと定義されま す。 • これはすばらしい目標ですし、私たち もいつかは達成できるかもしれません。 • しかしながら、こうした自動運転シス テムが抱える、技術的・社会学的な難 しさを甘く考えてはいけないと思って います。 2019年01月08日 https://global.toyota/jp/newsroom/corporate/26085185.html https://car.watch.impress.co.jp/img/car/docs/1161/181/html/001_o.jpg.html

25.

• x 官民 ITS 構想・ロードマップ 2019 より

26.

もっと知りたい人は・・・ • 5年後のビジネス構造変化を読み解く、 最良の教材は自動車産業だった! ガソリン車の廃止 世界規模の再編 水平 分業の大波 そしてコネクテッド 日本経済の大黒柱は大丈夫か 世界の自動車産業を知り尽くすコンサル タント・ジャーナリストの描く未来 忖度なしに「自動車業界」の現状を描く https://www.amazon.co.jp/dp/4065235294/

27.

今ある自動車がただ自動運転になる だけではない

28.

City of Tomorrow with Autonomous Vehicles (Drive Sweden) • 自動運転によって街がどう変わるかというビジョン – 街の空間を車のための場所から人のための場所へ • • • • • • 道路標識が不要に 道路を効率よく使えるようになり歩道が広がる 駐車場を街の中心に作らなくてよい 駅に到着したときに待たずに出迎え 自動運転トラックの隊列走行で効率よく 計画的に積み荷を処理することで駐車場削減 https://www.youtube.com/watch?v=WmYsWYDQxuI

30.

システムとして交通全般を捉え直し 現代の技術をベースにした組み合わせや都市 全体の最適化を考えるべき • これまでの自家用車、公共交通、自動車、電車などの区分を一 旦忘れる • 制度を硬直化させない工夫が必要

32.

S: Shared and Services IT×交通の可能性が 世界中で試されている

33.

Uber • 2010年 サンフランシス コで設立 • 2011年 NY、パリ進出 • 2013年 東京でタクシー 配車開始 • 2015年 CMUの研究者40 名を引き抜き • 2015年福岡市でライド シェア実証実験、国交省 が中止 • 2016年 トヨタと提携 • 2016年 京丹後市で「さ さえ合い交通」

34.

Uber Pool (Uber Express Poolと統合) • 乗客が「歩いて」「待つ」ことでさらに効率的なライドシェア を実現 – 2017年11月〜 サンフランシスコで試験提供 – 2018年2月〜 正式提供 https://techcrunch.com/2018/02/21/uber-officially-launches-uber-express-pool-a-new-twist-on-shared-rides/

35.

マイクロモビリティの急速な普及 • 電動キックボードとシェアサイクルをマイ クロモビリティと総称 – ドックレス(どこでも乗り捨てられる)が流行 • Bird、Jump (Uber)、Lyft、Lime、 Skip、Spin (Ford)などが全米の都市で競 争

36.

MaaS (Mobility as a Service)

37.

MaaSとは? • ドア・ツー・ドアの移動に対し、 様々な移動手法・サービスを組み合わ せて1つの移動サービスとして捉えるものであり、ワンストップでシーム レスな移動が可能となる。 • 加えて、様々な移動手段・サービスの個々のサービス自体と価格を統合 して、 一つのサービスとしてプライシングすることにより、いわば「統 合一貫サービス」 を新たに生み出すものであり、価格面における利便性 の向上により利用者の移動行動に変化をもたらし、移動需要・交通流の マネジメント、さらには、供給の効率化も期待できる。 • 小売・飲食等の商業、宿泊・観光、物流などあらゆるサービス分野との 連携や、医療、福祉、教育、一般行政サービスとの連携により、移動手 段・サービスの高付加価値化、より一層の需要の拡大も期待できる。 (国交省 都市と地方の新たなモビリティサービス懇談会中間とりまとめより)

38.

MaaS Global社による定義 • あらゆる種類の移動手段を単一の 直感的なモバイルアプリにまとめ ます。さまざまな事業者が提供す る移動の選択肢をシームレスに組 み合わせて、旅行計画から支払い まですべてを取り扱います。オン デマンドで旅行を購入する場合で も、手頃な価格の月額パッケージ をサブスクライブする場合でも、 MaaSは最善の方法であなたの移 動のニーズに応えます。

39.

Whim by MaaS Global • • ヘルシンキ(フィンランド)でMaaSを実現 Whim というアプリを通して鉄道、バス、タ クシー、自転車などの組み合わせ検索や予約決 済を実現 https://whimapp.com

40.

https://note.mu/kakudosuzuki/n/n01c8ab0f9b84 Whimの利用 • xx

41.

Whimのプラン: 料金により交通行動を誘導

42.

統合の度合いで4段階のレベルが提唱されている • xx http://www.tut.fi/verne/aineisto/ICoMaaS_Proceedings_S6.pdf

43.

変身するLA マイカーなしでも移動に不自由なし モビリティー革命進行する米国 • 牧村和彦氏(計量計画研究所) による現地レポート • 米国にて、車社会から新しいモ ビリティサービスによるまちづ くりが始まっていることを報告 https://www.nikkei.com/article/DGXMZO33296960T20C18A7000000/

45.

「全ての交通サービスが自分の ポケットの中にある」 という、 今までに感じたことのない 異次元の感覚

46.

モビリティのサービス化 (MaaS)は、自動運転より本質 的なモビリティ進化の方向性 流行語として消費される予感しかしない…

47.

MaaSの背景: IT・スマホの普及・発展 • いつでもどこでも「その時・その場で・他に何も使わずに」解決す るのが当たり前に – – – – 知りたい→WebやSNS検索 届けたい→SNSでシェア 売りたい→カメラで撮ってメルカリに 行きたい→乗り換え案内やGoogle Maps • 利用者の「したい・欲しい」の種に気付かせ、阻害せずに具体的な 形に落とし込めるようにUI/UXが進化中 – 明確に「何をしたい」を持たなくても、アプリとの対話の中で欲求を形成・具現化

48.

交通行動におけるスマホの役割の拡大 • なぜ使えなかった?雪の日の交 通アプリ – アプリに騙されてバス3回も逃した – 乗る予定のバスがアプリから消えた – タクシーアプリでずっと探してたけど全 然駄目 • →平常時に使えるだけでなく、 緊急時にも使えて当然という利 用者意識 – 悪天候なら乱れて当然、で思考停止しな い NHK NEWS Web 2016年1月19日 51

49.

交通事業者による検索エンジン最適化(SEO)的な発想 日経MJ 2015年10月19日 京阪電気鉄道社長インタビュー 鉄道に乗る際に利用者はスマホの 乗り換えサイトを利用します。 いくら沿線の良さをアピールしても大 半の方はサイトの上に表示された時 間が早いほうに乗ってしまう。先に 表示されないと選ばれない。鉄道を 選ぶ最大のポイントはサイトで上位 に表示されることになりつつある。 これは無視できない。だから1分でも 2分でも早くしようと努力しています 2015年10月25日 くらしの足をみんなで考える全国フォーラム2015 ラウンドテーブル インターネットやスマホはくらしの足にどう踏み込むのか 52 太田恒平氏スライドより

50.

公共交通を活かしたまちづくりの成熟 • モータリゼーションが先行したヨーロッパにおいて、中心市街 地を公共交通によって活性化する施策が一般化 – 数十万人規模の都市でもトラムを整備、赤字前提の運営 • LRT導入、歩行者専用道路、トランジットモール… フランス オルレアン https://commons.wikimedia.org/wiki/File:Rue_Jeanne_dArc_Tramw ay_Orleans.jpg フランス ストラスブール http://uemuraakifumi.com/machi/858 ドイツ カールスルーエ https://commons.wikimedia.org/wiki/File:Heilbronn_Bah nhofsvorplatz_Stadtbahn01_2002-09-08.jpg

51.

ヨーロッパなどでは運輸連合を形成 • 複数の交通事業者を一体運用し統一的な公共交通サービスを実現する組織 – 交通事業者、自治体などが主導し結成される • 公費を投入しての運営が前提、運賃収入は半分以下 • ドイツ、フランスなどで導入が進む – 1965年にドイツ ハンブルグで始まる • 運輸連合の役割(例) – – – – – – 統一的な運賃システムの構築と販売のマネジメント 事業者間での運賃調整 地方自治体や事業者との契約に関するマネジメント ローカル線の維持管理と品質管理 旅客輸送の計画策定 マーケティングと乗客への情報提供 https://www.itej.or.jp/assets/seika/jijyou/201209_00.pdf 運輸連合の概要と日本への示唆 −ドイツ・ベルリンを例に−(渡邉亮) 参照

52.

モビリティ革命の地域社会へのインパクト • 移動手段・くらしの足をどう確保するか – 多くの人にとっては、モータリゼーションで移動が手軽に・便利に – 過疎化・少子高齢化などの状況の中で、新しいモビリティで地域の足を再構築で きるか? • 地域の産業・経済基盤をどう成立させるか – 地域の雇用を支える企業・事業は今後どうなるのか • 裾野の広い自動車関連産業 • 道路などのインフラ整備 – 第一次、第二次産業からソフトウェア・サービスへ

53.

この講義の狙い・位置づけ • 本講義では、情報技術との融合によって高度化が進んでいる交通関 連技術について概観し、交通データ分析や交通シミュレーション、 交通案内サービス構築に必要な技術を身に付ける。 • 道路交通を中心に安全で円滑な交通を目指す交通工学、需要に応じ た最適な交通をデザインする交通計画学などの分野は、大量のデー タを取り扱う現代の情報技術と融合することで、より利便性が高く 効率がいい交通インフラや交通サービスの構築を可能にしている。 • この講義では、交通データの収集、可視化、分析、社会システムへ の応用について、最新の事例や研究成果を紹介するとともに、実際 の交通データに触れながらプログラミングやデータ分析ツールの利 用技術を身に付ける。

54.

交通の課題を論じる講義は充実 • 例:東京大学公共政策大学院 TTPU – – – – 国際交通政策 地域交通政策研究 観光政策概論 観光地域政策 • 研究テーマとして交通の課題を扱う 機会もあるのでは?

55.

課題に対処する方法を持ちたい • 「AIによって一気に最適化」とはならない • まずは現状の把握 – そもそもデータが無かったり、断片的だったり、いろいろな事情で入手出来ない ことも多い – データがあっても、その扱いが難しい • 仮説の提示と検証 – 課題に対応するためには、原因や解決策などについて仮説を立てて現状に当ては め、正しそうな仮説を選び磨いていく

56.

技術の民主化 (democratization)が進行中 • 技術の民主化 – ここでは大学、大企業、先進国などにいなくても、誰もがその技術を身に付け活 用できる状況 – 例: • 3Dプリンタによって安価に工業製品レベルのモノづくりが個人で可能に • 低廉なコンピュータによって発展途上国でも情報教育が可能に • 背景:インターネットによりノウハウ、情報交換が加速 – 個人が知識やノウハウをメディアに乗せ発信することに追い風 – 検索によって世界最先端の知識に容易にたどり着ける https://en.wikipedia.org/wiki/Democratization_of_technology

57.

オープンソースソフトウェア(OSS)で 交通の課題に取り組める時代 • GISなら – ArcGIS 対 QGIS • データベース(RDBMS)なら – Oracle Database 対 PostgreSQL • 交通シミュレーションなら – PTV Vissim 対 sumo

58.

データにおいてもオープンデータが進行中 • 国の基礎データは多くが公開されている – 国勢調査、道路交通センサス • 交通データのオープン化も進行中 – 公共交通オープンデータ(路線バスなど) https://gtfs-data.jp https://www.e-stat.go.jp