7.8K Views
September 20, 22
スライド概要
1. 触覚センサの概要と基本構成
①触覚センサに求められる検出機能と特性・種類
②触覚センサの基本構成
2. 触覚センサと種類と動作原理(センサ例含む)
①触覚
②すべり覚
③近接覚
3. これまで開発されてきた触覚センサ事例紹介
①触覚・すべり覚・近接覚とロボットへの応用を中心に紹介
②下条研で開発してきた主なセンサとハンド実装・制御
4. E-skin & E-textileについて簡単な紹介
5. まとめ
⚫ 旧VersionV2’です。リクエストにより掲載します。
⚫ 最新VersionはV3です。
⚫ V2’は、V3で削除した内容を多く含みます。
これまでに主に,ロボティクス・メカトロニクス研究,特にロボットハンドと触覚センシングの研究を行ってきました。現在は、機械系の学部生向けのメカトロニクス講義資料、そしてロボティクス研究者向けの触覚技術のサーベイ資料の作成などをしております。最近自作センサの解説を動画で始めました。https://www.youtube.com/user/shimojoster 電気通信大学 名誉教授
2019.6.24 触覚・近接覚センサ解説V2‘ “これからの触覚技術”補足説明資料 ⚫ 旧VersionV2’です。リクエストにより掲載します。 ⚫ 最新VersionはV3です。 ⚫ V2’は、V3で削除した内容を多く含みます。 下 条 誠 電気通信大学名誉教授 https://researchmap.jp/read0072509/ 参考資料: 触覚認識メカニズムと応用技術(増補版), 全666頁, サイエンス&テクノロジー株式会社, 2014 The University of Electro-Communications Department of Mechanical Engineering and Intelligent System
内 1. 2. 3. 容 触覚センサの概要と基本構成 ① 触覚センサに求められる検出機能と特性・種類 ② 触覚センサの基本構成 触覚センサと種類と動作原理(センサ例含む) ① 触覚 ② すべり覚 ③ 近接覚 これまで開発されてきた触覚センサ事例紹介 ① 触覚・すべり覚・近接覚とロボットへの応用を中心に紹介 ② 下条研で開発してきた主なセンサとハンド実装・制御 4. E-skin & E-textileについて簡単な紹介 5. まとめ 2
コメント ⚫ 例示センサの出典論文は各スライドに示しました ⚫ ビデオ(主にyoutube)がある場合はURLを示しました 下条研究室で開発したセンサ例の場合このアイ コンを表示してます。 補足説明の場合このアイコンを表示してます。 以下に示す例は,これまで開発された多数の触覚センサの一部です。 重要な開発例および利用例が抜け落ちているかと思います。 その点は著者のサーベーイ不足,知識不足であります。 ご了承頂ければ幸いです。 3
①触覚センサの概要と基本構成 ①触覚センサの概要 と基本構成 4
触覚センサの論文・特許数の経年変化 ("tactile sensor") 2400 2200 2000 1800 1600 1400 paper 1200 1000 patent 800 600 400 200 0 google scholarにより検索(1960~) 5 ("tactile sensor" OR "tactile sensors") AND patent
なぜ触覚か(1/3)? 6 1.商品の差別化・高級化を図る 視覚,聴覚 と比較して 利用がまだ 未開拓 2.より自然なインターフェース ➢ 視覚・聴覚・触覚の融合 ・見て聞いて触れる ➢ 入出力の融合 ・見て触って操作する 3.人工の手の実現 ➢ センシング機能 ・触れて検出・制御する
7 なぜ触覚か?(2/3) 触覚の特徴を利用する 1.確定感覚:接触による確認 ➢ 視覚で推定 ➢ 触覚で確認 2.接触感覚:力・硬さ・熱等の検出 ➢ 見えないもの を知覚する 3.原始感覚:心への伝達 ➢ 情動への関与 触覚の特性 識別感覚 制御 原始感覚 心
なぜ触覚か(3/3)? 器用な動作,様々な作業を行うための触覚 人間の優れた点 ”脳”と”手” ⚫認識・創造する脳 →人工知能 ⚫実体化する手 →人工の手 機能を向上させる触覚 8
9 五感の中の触覚 注 器官 集 中 型 分 散 型 通信量 視覚:眼 107 bit/s 聴覚:耳 105 bit/s 嗅覚:鼻 103 bit/s 味覚:舌 103 bit/s 触覚:皮膚 106 bit/s 大脳での触感覚領域の広さ [Penfield et al., 1950] 成人では1.6〜1.8㎡の面積と,3〜5Kgの重量を有する 最大の器官である 注:山田雅弘,"各感覚における神経情報処理の共通点・相違点".電総研調査報告,No.215, 18,1986
10 皮膚構造と機械受容器 順応時間 深さ :浅い→I SA: slow adaptation unit :深い→II FA: fast adaptation unit 皮膚受容器は,配置の“深さ” と,“順応” 時間のタイプから, 4種類に分けられる。 メルケル細胞 (SAI) 皮丘 皮溝 汗腺 表皮 表皮 隆起 Mr Mk 真皮 乳頭 真皮 皮下 組織 マイスナー小体(FAI) R ルフィニ終末 Pc パチニ小体 (FAII) (SAII)
11 機械受容器の周波数特性 メルケル細胞 (SAI) マイスナー小体(FAI) NP-III ( FA-I ) 振動刺激振幅(dB :1.0μm基準) 45 (SAII) パチニ小体 (FAII) NP-II ( SA-II ) NP-I ( SA-I ) 30 ルフィニ終末 強度検出 15 速度検出 0 P ( FA-II ) -15 加速度検出 30 0 1 10 100 1000 振動刺激周波数( Hz :対数軸) S. J. Bolanowski, Jr. , G. A. Gescheider , R. T. Verrillo , C. M. Checkosky, Four channels mediate the mechanical aspects of touch,J. of the Acoustical Society of America 84,5, November 1988
12 触覚センサの標準デバイスは? 触覚は,視覚,聴覚に対して開発が遅れている 標準デバイス 視覚センサ:ビデオカメラ 聴覚センサ:マイクロホン 触覚センサ:??? ?
触覚センサは,何が難しいのか 13 ◼接触型である ➢ 伸び,縮み,擦り,打撃などに対する物理的耐久性 ➢ 水,油などの化学的汚染に対する化学的耐久性 ◼分布型である ➢ 柔軟で薄く,広範囲の自由曲面を覆えることが必要 ➢ 多数分布する検出素子への配線処理が必要 ◼能動型である ➢ 触覚は手・指でなぞる等の何らかの意図に基づいた探索的動作が必要な感覚である. ➢ 接触・なぞり動作を行なう機構の付与が必要 ➢ アクティブタッチに関わる検出アルゴリズムが必要 ◼多角的センシングである ➢ 力/トルク(ベクトル量)の検出,滑り,振動,熱効果,接触面積の検出
触覚研究開発での初期の提案 Robotics Research 14 Skin-like Properties 薄いシート状で,柔軟で曲面 配置可能,耐久性あり. (Dippingで成形可能) 1. Space resolution: 1-2mm 2. Fingerlike Array : 10x20 elements Vol.1, No.2,1982 4. Dynamic Range: 1:1000 2400 2200 2000 1800 1600 1400 paper 1200 1000 800 600 400 3. Sensivity: 5-10g patent 1982 5. Reaction time: 1-10ms 200 0 LD Harmon, Automated Tactile Sensing, The International Journal of Robotics Research, Vol.1, No.2, pp.3-32, 1982
触覚に求められる検出機能 近接覚センサ 距離/方向 触覚センサ 物体面までの ⚫ 距離/方向 ⚫ 接触位置 ⚫ 力/トルク 力/トルク ⚫ すべり ⚫ 初期すべり 振 動 ⚫ 衝突回避 ⚫ 柔らかな接触 ⚫ 倣い,追尾 ⚫ 柔らかさ硬さ ⚫ 静摩擦/動摩擦 ⚫ すべり方向 ⚫ 力/トルクの分布 接触パターン 15 ⚫ テクスチャー ⚫ 接触面3D変形 ⚫ 接触状態 情報処理
触・近接覚からの検出情報と操作への利用 触・近接覚センサからの検出情報の種類および操作への応用,並びに新技術・新材料 などの最近のトピクッスを表す。センサ情報とセンサを実装したロボットの運動情報とを 統合処理することで,各種情報の検出と操作を行えることを示している。 16
触覚センサに求められる検出機能 さまざまな接触に関係する物理量の計測 機能(タスク) 検 出 量 接触位置 点接触位置 接触強度 法線方向力 力強度/方向 接触位置,および力ベクトル・モーメント(法線/接線方向力など) 力の分布 法線方向力分布,力ベクトル・モーメント分布 摩擦係数 静摩擦/動摩擦係数の推定 すべり 初期滑り,すべり,すべり方向 変形・変位 柔らかさ,硬さ計測 温度 温度分布,熱伝達率 表面粗さ 触運動によるテクスチャー計測 触覚イメージ 接触画像,接触面変形3D画像 17
触覚センサに求められる特性 ◆ 薄く柔らかい ✓ 物理・化学的耐久性 ◆ 伸縮性 ✓ 関節部覆える ◆ 広い曲面を覆える ◆ 多種類のセンサ(人間) ✓ 触圧,振動,伸展,温冷, 痛覚 ◆ 多数のセンサ(人間) ✓ 機械受容器(107個),温(3 x104個),冷(2.5x105個) ✓ 17000本の神経線維/片手 18
触覚センサに求められる特性 人間の皮膚のように薄く柔らかく多種類のセンサを実現 項 目 機 能 多数の検出素子 要 求 事 項 ・柔軟/薄型の確保,広い面積/曲面への配置 ・高密度への対応,高速動作、配線処理の問題 分布量検出 多種類の検出素子 ・接触,振動,すべり,温度などの検出 ・力ベクトル,モーメントベクトルの検出 素材特性 柔らかい ・皮膚のように薄く柔軟で伸び縮み可能 薄い ・伸び,縮み,擦り,打撃などに対する物理的耐久性 伸縮性 ・水,油,薬品などに対する化学的耐久性 広い曲面を覆える ・関節部など伸び縮みする曲面の被覆 局所情報処理 ・高速サンプリング動作 情報処理 ・触覚の局所的情報は局所的に処理する。 データ伝送 ・高速通信,省配線,耐ノイズ,耐久性 19
触覚に対するニーズと技術 ロボティクス・メカトロニクス 分野 制御用 マニピュレーション 触覚提示デバイス ・精度,時間応答速度は人 ・高い周波数応答性 ・力(ベクトル) 間を上回る ・すべり検出 インタラク ティブ用 触感覚用 ヒューマンインターフェース 分野 ロボット用皮膚 ・柔らかく,丈夫,大面積化 情報機器入力デバイス ・薄型,マルチタッチ 触感・質感センサ 触診・肌状態診断など ・多角的情報の計測 ・温度,硬さ,表面粗さ, 粘弾性, ・アクティブタッチ ・硬さ,温度,粘弾性 20
触覚に対するニーズと技術 ロボティクス分野 インタラ クティブ 利用 触感覚 利用 制御利 用 ヒューマンインターフェース分野 目的 全身触覚,触覚スーツ 情報/家電機器インターフェース 計測 接触位置・力検出 接触位置・力検出,指多点入力 特徴 大面積,曲面,柔軟,耐久性, 薄型,軽量,省電力,安価,耐久性 目的 触感覚などの検出 医療・福祉用の触覚情報検出 計測 製品の状態,食品の触感などの計測,触診への利用,肌状態計測など 特徴 表面アラサ,硬さ,摩擦,変形,温度,熱伝達率,接触面積などの計測 目的 マニピュレーション制御入力 計測 接触位置・力検出(ベクトル), 接触位置・力検出(ベクトル量)温度 すべり 特徴 高精度,高速性(1ms) 義手用触覚,ハプティクス装置制御入力, 薄型柔軟性,伸び縮み 21
触覚センサの分類 22 ◼ 触圧覚センサ: ① 接触センサ:物体との接触をON/OFF情報として検出する ② 圧覚センサ:接触力を連続量として検出する ◼ すべり覚センサ: ✓ センサと物体との相対的なすべり変位,速度を検出する ◼ 近接覚センサ: ✓ センサの近傍にある物体の有無,もしくは位置,距離などを 検出する ◼ 温熱覚センサ,硬さ覚センサなど: ✓ 触覚は視覚と補完的な役割があり,視覚では見えない力の ほか,温熱覚,硬さなどを計測する
触覚と力覚センサの用語の違い ✓ 一般に触覚センサとは,物体とセンサ間の力学的関係を 検出するセンサで,分布圧,力とモーメント,すべり等 を検出する。 ✓ その中の,“力とモーメント”の大きさと方向を計測す るセンサを力覚センサと呼ぶ。力覚センサは指の関節や 手首に取付けられることが多い。 23
触覚センサの構成 電気量 物 理 量 - 24 電気量 + 変換器 物理 量 電気 量 検出回路 狭義の センサ 信号処理・伝送 広義の センサ
力を電気量に変える変換器 変換器: 力 変位 電気量 例) 弾性体 𝐴 𝐶=𝜖 𝑑 𝜖: 誘電率 ΔC: 静電容量変化 25
力を電気量に変える変換器 力を電気量に変える変換器は多くの種類がある ◆ 電気抵抗 ✓ 抵抗体の伸縮などによる抵抗値変化 ◆ 静電容量 ✓ 誘電体の圧縮による静電容量変化 ◆ 光利用 ✓ ✓ 光路長変化による光量変化 柔軟体変形の3D計測 ◆ 電荷 ✓ 圧電効果(ピエゾ効果) ◆ 磁気 ✓ 柔軟体変形による磁場変化 ◆ 超音波 ✓ ✓ 経路長変化による強度位相変化 共鳴 26
配線方式と伝送方式(配線処理問題) 27 触覚センサでは 1. 広い面積に多数の検出素子が分布することがある。 2. このとき,配線が測定の妨げにならぬよう,多数の検出素子を 繋げる配線方式が必要となる。 3. そして,測定された多数のデータをセンサから情報処理部にど のように伝送するかその方式も重要である。 4. これらは,配線処理(コード)問題と言われ難しい課題である。
配線方式と伝送方式 (a)一対一,(b)マトリクス 介護ロボット RI-MAN (a) 一対一配線方式 8x8に半導体圧力センサを配置 http://rtc.nagoya.riken.jp/RI-MAN/index_jp.html (b) マトリクス状 64x64マトリクス電極 http://www.rm.mce.uec.ac.jp/sjE/index.php?Tactile%20sensor 28
配線方式と伝送方式(c)階層的シリアルバス方式 29 (c)階層的シリアルバス方式 12 tactile sensor ATtiny40(8-bit ) A highly sensitive 3D-shaped tactile sensor ,Ritter, 2013 IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics (AIM ) Event-based signaling for large-scale artificial robotic skin - Realization and performance evaluation,cheng,IROS2016 A real-time data acquisition and processing framework for large-scale robot skin, S. Youssefi et al. / Robotics and Autonomous Systems 68 (2015)
配線方式と伝送方式(d)ワイアレス方式 30 Tactile chip Antenna/ coil Wireless Tactile Sensing Element Using Stress-Sensitive Resonator, Shinoda, IEEE/ASME TRANS. ON MECHATRONICS, 5, 3, 2000 A Sensitive Skin Using Wireless Tactile Sensing Elements,shinoda, TECHNICAL DIGEST OF THE 18TH SENSOR SYMPOSIUM, 2001 A Capacitive Touch Interface for Passive RFID Tags,J.R. Smith,2009 IEEE International Conference on RFI
配線方式と伝送方式 (e)境界接続方式 31 (e)境界接続方式 石川正俊, 下条誠: 感圧導電性 ゴムを用いた2次元分布荷重の中 心位置の測定方法,SICE, 18, 7, 1982 A Tactile Distribution Sensor Which Enables Stable Measurement Under High and Dynamic Stretch, Nagakubo, IEEE Symp. on 3D User Interfaces 2009
②触覚センサと種類と動作原理 ②触覚センサの種類 と動作原理 32
触覚センサの種類 33 ◆ 触覚→触圧覚センサ ①接触センサ:物体との接触をON/OFF情報として検出する ②圧覚センサ:接触力を連続量として検出する ◆ すべり覚 ◆ 近接覚
触覚センサの動作原理 (1)力により変形する機械的構造体 力→変形量ε →電気量 (2)変形量を計測する方式 ①電気抵抗方式, ②静電容量方式, ③光方式, ④電荷方式, ⑤磁気方式, ⑥超音波方式 34
35 力から電気量への変換方式 方 式 原 理 触覚センサ/材料 備 考 ひずみ抵抗変化 ひずみゲージ,導体型圧力センサ(ピエゾ抵 材料の伸縮による断面積,長さ変化などによ 抗効果) る抵抗値変化 パーコレション原理 感圧導電ゴム,感圧エラストマー 接触抵抗変化 感圧インク,感圧繊維 導電体(粒体,フィーラー)の体積比率の増減 に伴う抵抗値変化 接触面積の増減に伴う抵抗値変化 電極間容量変化 弾性体,誘電体 電極間の距離変化に伴う静電容量変化 光量変化 光路変化による光量変化,光拡散,発光受光 発光/受光素子間の距離・姿勢などの相対変 化(経路長,相対位置/姿勢)散乱光変化 素子,光ファイバー 屈折率変化(全反射) 光導波型,ガラス,ポリマー 変形/変位の画像計測 ゲルフォース,ゲルサイト,光透過性弾性体 電荷 光経路遮断 圧電効果(ピエゾ電気) フォトインタラプタ 圧電ポリマー,PVDF,PZT,水晶 磁気 磁気変化 ホール素子,磁気抵抗素子,磁性体 微小磁石/磁性粒子+ホール素子/磁気抵抗 素子などの組合わせでの変位計測 強度/位相変化 弾性体,圧電体(送受信) 発振/受信素子間の距離・姿勢などの相対変 化(経路長,相対位置/姿勢) 共鳴(共振) 音響共鳴型,弾性体 空洞形状変化による共鳴周波数変化 電気抵抗 静電容量 光 超音波 光導波路の変形による光漏れ(全反射条件 の破れ) ゲル内標的の3D変形,ゲル表面変形などの 撮像系による変位計測 発光/受光素子間の光路を塞ぐ 圧力による分極に伴う表面電荷変化 E-skin 有機トランジスタ/OFETを用いたアクティブマトリックス方式を用いた触覚センサ.印刷技術による作成.伸縮可能で薄型な触覚を 実現.力を電気量に変換する原理は同じ. E-textile 導電性高分子繊維,炭素,金属等で表面修飾した繊維を用いて,編み込み,織り上げ技術を用いた布状の触覚センサ.力を電気 量変換は,繊維間の接触抵抗,静電容量などを用いる. その他 機械的方式:バネなどの機械的構造の変位,変形から接触力を検出する 触角(whisker),微小クラック(光漏れ,抵抗値)
触覚(触圧覚)センサ ⚫ ⚫ ⚫ ⚫ 電気抵抗方式(ひずみゲージ) 電気抵抗方式(感圧導電ゴム) 電気抵抗方式(接触抵抗値変化) 電気抵抗方式(圧抵抗効果方式) 36
電気抵抗方式(ひずみゲージ) 37 荷重による抵抗線の歪みによる抵抗値変化から検出する方式 共和電業社製歪ゲージ R l K = K R l K:ゲージ率 ひずみアンプ ブリッジ回路 抵抗体の種類により, ✓ 箔ひずみゲージ, ✓ 線ひずみゲージ, ✓ 半導体ひずみゲージなど
38 力覚センサへの利用(ひずみゲージ) 例) ATI 指先 (BL AUTOTEC LTD.) 手首 (PR2)
力覚センサ ちなみに,力覚センサはひずみゲージ方式だけではない 水晶圧電方式 エプソンS250シリーズ 静電容量式 ワコーテック Dynpick 39
電気抵抗方式(感圧導電ゴム) 多孔質シリコンゴム中に炭 素粒子等の導電粒子を均 一に拡散させたものである 荷重 抵抗値 利点: ➢ 薄く柔軟で加工が容易 ➢ 大面積化が容易 ➢ 衝撃などによっても破損しない ➢ 検出回路は簡単 ➢ 安価 欠点: ➢ ヒステリシス特性があり, ➢ 定量的な計測に不向き 40
電気抵抗方式(感圧導電ゴム) 感圧原理 41 パーコレション:感圧導電ゴムの導電機構を説明する一つの理論 導体密度上昇→相互接触増加→導電性発現 (力→導電体を含む柔軟物の圧縮→導体密度上昇→電気抵抗値減少) 導体:カーボン粒子,導体糸,カーボンナノチューブ(CNT),グラフェン (graphene)等
42 電気抵抗方式(感圧導電ゴム) 縦方向に電流が流れる 横方向に電流が流れる ©shimojo (1)縦方向電流パス方式 ©shimojo (2)横方向電流パス方式
感圧導電ゴムの特性例 荷重 VS 抵抗値 周波数 VS エネルギ散逸 ひずみ VS 応力 ひずみ VS エネルギ散逸 M. Shimojo, A. Namiki, M. Ishikawa, R. Makino and K. Mabuchi: A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method, IEEE Trans. Sensors, Vol.4, No.5, pp.589-596, 2004 43
感圧導電ゴムの特性例 抵抗値時間緩和特性 44 抵抗値応答特性 M. Shimojo, A. Namiki, M. Ishikawa, R. Makino and K. Mabuchi: A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method, IEEE Trans. Sensors, Vol.4, No.5, pp.589-596, 2004
電気抵抗方式(接触抵抗値変化) 45 感圧インク表面の微小な凹凸部分の接触 面積が圧力により変化し,電極間相互の 接触抵抗が変化することから圧力を計測 利点: ➢ 薄いフィルム状(0.1mm) ➢ 印刷による形成ため自由な形状と空間 分解能が可能 欠点: ➢ 剪断力に弱い ➢ 変形するとフィルムに皺発生し,故障 ➢ ヒステリシス特性 https://www.nitta.co.jp/product/sensor/flexiforce/A201/
電気抵抗方式(接触抵抗値変化) 感圧原理 接触面積の増減による接触抵抗値の変化 荷重負荷 弾性のある 導体変形 接触面積の 増加 抵抗値の減少 https://www.nitta.co.jp/product/sensor/ 46
電気抵抗方式(接触抵抗値変化) 47 2枚のフィルム(PET)に、行・列の銀電極を配線し,感圧導電性 インクで被覆,電極の交点が検出点,圧力がかかると電気抵抗 値が変化 ✓ 薄さ:0.1mm ✓ 感度:50kPa~20MPa ✓ サンプリング:100Hz程度 https://www.nitta.co.jp/product/sensor/ https://www.youtube.com/watch?v=rzHiGQh2FNo
48 Tekscan FlexiForce™ Standard Model A201 Thickness :0.203 mm Sensing Area: 9.53 mm diameter CoV; Components of Variance https://www.tekscan.com/products-solutions/force-sensors/a201
電気抵抗方式(圧抵抗効果方式) 49 圧抵抗効果: ✓ 半導体結晶に圧力を加えるとその電気抵抗が変化する。 ピエゾ抵抗効果(piezoresistive effect)ともいう 気圧センサ(barometer)への利用例 気圧センサ(barometer)ICはこのピエゾ抵抗式受圧素子(ダイヤフラム構造とピエゾ抵 抗を集積化したMEMS)と温度補正処理、制御回路等を含めた集積回路パケージ化
Takktile(気圧センサIC分布型触覚センサ) 50 MEMS barometric sensor chipを分布させて触覚センサを構築 I2C接続 MEMS barometric sensor (MPL115A2, Freescale Semiconductor) Load is applied through a spherical tip with diameter of 6 mm https://softroboticstoolkit.com/book/takktile-sensors
Takktile(気圧センサIC分布型触覚センサ) https://www.youtube.com/watch?v=TqMtOmw9C7Y 51
2017 ReFlex Robotic Grippers 52 https://www.youtube.com/watch?v=4Ku7Q3vEkRw
触覚センサ(静電容量方式) 53
静電容量方式 54 誘電体変形による静電容量変化から力を計測 利点: ➢ 薄型で構造がシンプル ➢ 誘電体により検出感度など の特性を変更可能 ➢ 静電容量変化検出用IC市販 https://pressureprofile.com/ 欠点: ➢ 空間分解能を上げると容量 が小さくなりS/N比が低下 ➢ 電磁ノイズ,温度の影響を 受けやすい http://wiki.icub.org/wiki/Tactile_sensors_(aka_Skin)
55 静電容量方式 C = A d : 誘電率,A:面積,d:電極間距離 荷重負荷 弾性のある 誘電体変形 電極間距離 の減少 AD7147 A Tactile Sensor for the Fingertips of the Humanoid Robot iCub,A.Schmitz, IEEE/RSJ Int. Conf. Intell. Robots Syst., 2010 静電容量Cの 増加
静電容量方式 ✓ ✓ ✓ ✓ 56 最小感度:10Pascal(0.1gf/cm2)も可能としている 薄さ: 1mm linearity : 99.8% Sample rate: 7-10KHz/element https://pressureprofile.com/ CONFORMABLE TACTARRAY SENSOR (CTS) https://www.youtube.com/watch?v=lvVJ9vG6H_k