統計学II-3

12.7K Views

February 18, 23

スライド概要

2022年度統計学IIの講義資料です。

profile-image

好きな色は緑です。

シェア

埋め込む »CMSなどでJSが使えない場合

関連スライド

各ページのテキスト
1.

統計学 II-3 ・推測統計の導入 ・標本抽出 ・点推定 ・標本分布 ・区間推定 ・仮説検定 https://logics-of-blue.com/

2.

本資料について 本資料の成り立ち 馬場が担当する学部1年生向け統計学IIの講義資料抜粋 統計学を初めて学ぶ、文系の学生が受講する想定 本資料の取り扱い あくまでも、本来の講義資料の抜粋なので注意 (計算演習・講義内クイズ・前回講義の復習 口頭での説明内容等は省略) SNSなどでスライドのスクショを張り付けるのは、 避けてほしい (文脈がわからないと、誤った理解を促すため) 2

3.

本資料について 本資料の使い方 想定①:講義の受講者が復習に利用する 想定②:未受講者が統計学入門資料として利用する ※想定②の場合は、下記参考文献も参照すること 参考文献 馬場真哉,2022,翔泳社 『Pythonで学ぶあたらしい統計学の教科書 第2版』 倉田博史・星野崇宏,2009,新世社 『入門統計解析』 鈴木武・山田作太郎,1996,内田老鶴圃 『数理統計学』 3

4.

本資料の範囲 10.統計的仮説検定の導入 11.統計的仮説検定の解釈 12.母平均に関する検定1 13.母平均に関する検定2 14.独立性の検定 15.期末テスト

5.

統計学 II 第10回:統計的仮説検定の導入

6.

内容 1.二項検定の初歩 2.母平均に関する𝒕検定の初歩 3.統計的仮説検定を利用する注意点 6

7.

二項検定の初歩 7

8.

内容 1.二項検定の初歩 2.二項分布 3.二項検定 8

9.

内容 1.二項検定の初歩 2.二項分布 3.二項検定 9

10.

二項検定の初歩 統計的仮説検定とは(ざっくり) ⚫ データを使って判断のサポートをする手法 (あくまでサポートするだけなので注意) ⚫ 確率の考え方を使うのが特徴 ⚫ 単に「仮説検定」や「検定」と呼ぶこともある ⚫ 統計的仮説検定にはたくさんの手法がある データや目的に合わせて手法を使い分ける 二項検定 統計的仮説検定の一種。母比率の検定と呼ぶこともある 問題設定がイメージしやすいので、最初に紹介する 色んな検定があるが、まずは二項検定を 10

11.

二項検定の初歩 ここからの進め方 ちゃんとした用語の定義などは、後ほど説明 まずはざっくり検定の流れを説明 11

12.

二項検定の初歩 ちょっと怪しい推論 SSR排出率が2%のガチャがある 10連ガチャを回しても、当たりキャラが出ない ↓ このガチャは当たりキャラが一人も入ってない。不正だ! ガチャで当たりが出ないことはよくあるよ 今回の事例 ガチャを回しても当たりが1回も出なかった →当たり率は2%とより小さいのではないだろうか? →「当たり率が2%より小さい」と言えるかどうか調べる 参考:ワンランク上を目指す人のためのPython実践活用ガイド(2022).技術評論社 第7章7-5節(馬場執筆箇所)

13.

二項検定の初歩 帰無仮説・対立仮説 帰無仮説:ガチャの当たり率は2%と等しい ○○は××と等しい 対立仮説:ガチャの当たり率は2%より小さい ○○は××と異なる(大きい/小さい) 帰無仮説との矛盾の度合いを測ることで 自分の主張したいことを支持する 13

14.

二項検定の初歩 有意差 意味の有る差 正直、かなりあいまい 「意味の有る差」ってなんだ 「意味の無い差」ってなんだ 14

15.

二項検定の初歩 1%以上ずれてたら 有意差ありってことにしようぜ~ 10連しか回さなかったら、当たり0%になる 1連しか回さなかったら、0%はよくある そのやり方だと、回す数を減らすと 有意差が出やすくなりそうだ くっ…… 15

16.

二項検定の初歩 じゃあ200連以上回して当たり0なら 有意差ありってことにしとこうぜ! 200連回して当たり0より、 2000連回して当たり1の方がひどくない? 1億連回して、当たり1でも有意差無しだと ちょっと違和感があるな くっ…… 16

17.

二項検定の初歩 意外と難しい有意差の考え方 統計的仮説検定では確率を計算して判断をサポートする →「仮に○○だと想定したら」という仮定をおいて 確率を計算する 確率を計算しよう 1. 「当たり率が本当に2%だとしたら」という仮定を置く (他にもいろいろな仮定があるが、後述) 2. 実際の結果、あるいはそれより極端な結果が 発生する確率を計算する 17

18.

クイズ 表が出る確率が2%のコインを 100回投げて、 表が1回も出ない確率は? 確率を計算しよう SSRの当たり率が2%のガチャを100回実行したとき、 当たりが1回も出ない確率は? ① 1%未満 ② 1~5% ③ 6~10% ④ 11~15%

19.

クイズ(回答) 表が出る確率が2%のコインを 100回投げて、 表が1回も出ない確率は? 確率を計算しよう SSRの当たり率が2%のガチャを100回実行したとき、 当たりが1回も出ない確率は? ① 1%未満 ② 1~5% ③ 6~10% ④ 11~15% 100回程度当たらなくても仕方ない よくあること

20.

クイズ(回答) 計算方法 当たりが出る確率が2%ということは、 はずれが出る確率は98%! 98%で起こることが100回連続で起こる確率を計算 0.98 × 0.98 × 0.98 ×… 0.98 × 0.98 0.98を100回掛け合わせる 答えはおよそ0.133なので13%ほど 20

21.

クイズ(回答) 計算方法 当たりが出る確率が2%ということは、 はずれが出る確率は98%! 98%で起こることが100回連続で起こる確率を計算 スマホの電卓機能を使って 0.98の100乗を計算すると一瞬 0.98 × 0.98 × 0.98 ×… 0.98 × 0.98 (期末テストではスマホ利用不可) 0.98を100回掛け合わせる 答えはおよそ0.133なので13%ほど 21

22.

二項検定の初歩 確率の閾値について SSRの当たり率が2%のガチャを100回実行したとき、 当たりが1回も出ない確率はおよそ13% とりあえずこの確率が5%未満なら 有意差ありってことにしとこうぜ(テキトー) 5%という数値には根拠がないが、 経験的に5%という数値が多く使われる この閾値を有意水準と呼ぶ 22

23.

二項検定の初歩 確率の閾値について SSRの当たり率が2%のガチャを200回実行したとき、 当たりが1回も出ない確率はおよそ1.8% かなり低い確率じゃん じゃあ有意差ありってことにしとこうか なんか雑だが、このように判断することは しばしば行われているようだ 便利な判断基準だが、乱用には注意 23

24.

二項検定の初歩 確率の閾値について SSRの当たり率が2%のガチャを200回実行したとき、 当たりが1回も出ない確率はおよそ1.8% 98%で起こることが200回連続で起こる確率を計算 0.98 × 0.98 × 0.98 ×… 0.98 × 0.98 0.98を200回掛け合わせる 答えはおよそ0.018なので1.8 %ほど 24

25.

二項検定の初歩 ひとまずの結論 SSRの当たり率が2%のガチャを100回実行したとき、 当たりが1回も出ない確率はおよそ13% SSRの当たり率が2%のガチャを200回実行したとき、 当たりが1回も出ない確率はおよそ1.8% SSRの当たり率が2%だと想定したとき、 実際の結果、あるいはそれより極端な結果が 発生する確率が5%未満なら、 当たり率が2%とは違う(有意差あり)ってことにしておこう (この5%を有意水準と呼ぶ) (この5%という数値に根拠はない。1%などでもOK) (有意水準を1%にしたら、200回ガチャでも有意差無し)

26.

内容 1.二項検定の初歩 2.二項分布 3.二項検定 26

27.

二項分布 確率の計算と二項分布 前期で登場した二項分布を使って確率を計算する 二項分布とは 確率分布の1種。正規分布のようにパラメータを持っている →パラメータを変えることで、様々な確率分布を作れる 二項分布の確率質量関数 Bin 𝑋 𝑛, 𝜃 = 𝑛C𝑥 ∙ 𝜃 𝑥 ∙ 1 − 𝜃 𝑛−𝑥 パラメータは𝑛と𝜃の2つ 27

28.

二項分布 二項分布のパラメータ𝜃, 𝑛の意味 表が出る確率が𝜃であるコインを𝑛回投げた時、 𝑋回の表が出る確率 Bin 𝑋 𝑛, 𝜃 = 𝑛C𝑥 ∙ 𝜃 𝑥 ∙ 1 − 𝜃 𝑛−𝑥 成功確率:𝜃 試行回数:𝑛 28

29.

二項分布 二項分布に従う確率変数の期待値と分散(参考) 成功確率:𝜃 試行回数:𝑛 Bin 𝑋 𝑛, 𝜃 = 𝑛C𝑥 ∙ 𝜃 𝑥 ∙ 1 − 𝜃 𝑛−𝑥 期待値 𝐸 𝑋 = 𝑛𝜃 分散 𝑉 𝑋 = 𝑛𝜃 1 − 𝜃 証明は少し難しいので省略 (興味のある学生は https://logics-of-blue.com/stats-calc-note/ )

30.

二項分布 確率を計算しよう(復習) 1. 「当たり率が本当に2%だとしたら」という仮定を置く 2. 実際の結果、あるいはそれより極端な結果が 発生する確率を計算する 今までと全く同じ確率の計算を 二項分布を使ってもう一度行う 30

31.

二項分布 今までの議論 SSR排出率が2%のガチャがある でも、当たりキャラが出ない! →「当たり率が2%より小さい」と言えるかどうか調べる 二項分布を使って議論 Bin 𝑋 𝑛, 𝜃 = 𝑛C𝑥 ∙ 𝜃 𝑥 ∙ 1 − 𝜃 𝑛−𝑥 パラメータ𝜃が「当たり率」である →「パラメータ𝜃が0.02より小さいと言えるか」を調べる 二項検定はパラメータ𝜃が ある特定の値と異なるかどうかを調べる

32.

二項分布 二項分布で確率計算 SSRの当たり率が2%のガチャを100回実行したとき、 当たりが1回も出ない確率はおよそ13% 数値を 代入 Bin 𝑋 𝑛, 𝜃 = 𝑛C𝑥 ∙ 𝜃 𝑥 ∙ 1 − 𝜃 Bin 0 100,0.02 = 𝑛−𝑥 0 ∙ 1 − 0.02 C ∙ 0.02 100 0 100−0 = 13% 「パラメータ𝜃が0.02だ」と考えて確率を計算 → 𝜃 = 0.02を代入 ガチャを100回実行した → 𝑛 = 100を代入 1回も当たりが出なかった → 𝑋 = 0を代入 32

33.

二項分布 二項分布で確率計算 SSRの当たり率が2%のガチャを200回実行したとき、 当たりが1回も出ない確率はおよそ1.8% 数値を 代入 Bin 𝑋 𝑛, 𝜃 = 𝑛C𝑥 ∙ 𝜃 𝑥 ∙ 1 − 𝜃 Bin 0 200,0.02 = 𝑛−𝑥 0 ∙ 1 − 0.02 C ∙ 0.02 200 0 200−0 = 1.8% 「パラメータ𝜃が0.02だ」と考えて確率を計算 → 𝜃 = 0.02を代入 ガチャを200回実行した → 𝑛 = 200を代入 1回も当たりが出なかった → 𝑋 = 0を代入 33

34.

内容 1.二項検定の初歩 2.二項分布 3.二項検定 34

35.

二項検定 二項分布から見た二項検定 母集団分布を二項分布だと考える 二項分布からの単純ランダムサンプリングで 「当たり回数」というデータが得られると考える 二項検定は母集団分布のパラメータ𝜃が ある特定の値と異なると言えるかどうかを調べるための 手法だと言える 35

36.

二項検定 とあるガチャを100回実行したとき…… 100回中、1回当たったよ! 100回中、 3回も当たったよ! 100回中、 1回も当たらない…… 母集団:知りたいと思っている集団全体 →今回の例では、無数のガチャ結果

37.

二項検定 とあるガチャを100回実行したとき…… 1回も当たらない…… 標本:手に入れた一部のデータ →今回は1回も当たらなかったとする

38.

二項検定 とあるガチャを100回実行したとき…… 3回当たった! たまたま 「たくさん当たる」 こともある

39.

二項検定 とあるガチャを100回実行したとき…… 3回当たった! 無数のガチャ結果から ランダムに1回の結果を取得

40.

二項検定 単純ランダムサンプリング 1回も当たらない…… 試行回数𝑛 = 100、 成功確率𝜃 = 0.02の 二項分布が母集団分布 母集団についての仮定+ 標本抽出の仮定を組み合わせたモデル 40

41.

二項検定 確率を計算しよう 1. 「当たり率が本当に2%だとしたら」という仮定を置く さらに、母集団分布が二項分布であり、 そこから単純ランダムサンプリングで標本が得られた という仮定を置く 2. 実際の結果、あるいはそれより極端な結果が 発生する確率を計算する この確率を𝑝値と呼ぶ SSRの当たり率が2%のガチャを100回実行したとき、 当たりが1回も出ない確率はおよそ13% 𝑝値が有意水準(5%)以上なので差があるとは言えない →ガチャ不正の根拠を得ることはできなかった 41

42.

二項検定 確率を計算しよう 1. 「当たり率が本当に2%だとしたら」という仮定を置く さらに、母集団分布が二項分布であり、 そこから単純ランダムサンプリングで標本が得られた という仮定を置く 2. 実際の結果、あるいはそれより極端な結果が 発生する確率を計算する この確率を𝑝値と呼ぶ SSRの当たり率が2%のガチャを200回実行したとき、 当たりが1回も出ない確率はおよそ1.8% 𝑝値が有意水準(5%)未満なので有意差ありと判断 →このガチャは不正だという理由付けの1つになる 42

43.

二項検定 確率計算のおまけ 例えば300回ガチャを実行して当たりが1つ出たとする →この場合は「当たりが1つ出る確率」と さらに極端である「当たりが1つも出ない確率」の 合計値を利用する →これが「実際の結果、あるいはそれより極端な結果 が発生する確率」の意味 実際の計算は難しいので省略 43

44.

二項検定 終わりに 有意差の有無を判断するには、 中間テストまでずっとやってきた 「母集団」や「標本」などの議論が必要なんだな~と いうイメージは持ってほしい データを入力して、 即座に判断が「ポン」とできる便利な道具 ……というわけではないので注意 44

45.

二項検定で登場した用語など 有意差 意味の有る差 メモ 便宜的にこう呼ぶ 帰無仮説・対立仮説 帰無仮説の例:母集団のパラメータは××と等しい 対立仮説の例:母集団のパラメータは××と異なる 帰無仮説が棄却されたら「有意差あり」と判断する 判断の流れ 帰無仮説を想定したうえで、モデルを用いて、 実際の結果や、より極端な結果が発生する確率を計算。 その確率が「有意水準」を下回る場合には、 帰無仮説を棄却して有意差ありと判断する。 有意水準は5%がしばしば使われるが1%などでも良い

46.

母平均に関する𝒕検定の初歩 二項検定とはまた異なる仮説検定の紹介 詳細は2回後の講義で説明する 初回講義ではおおざっぱな判断の流れを 理解することを目指そう 46

47.

内容 1.統計的仮説検定の流れ 2.検定統計量 3.𝒑値 47

48.

内容 1.統計的仮説検定の流れ 2.検定統計量 3.𝒑値 48

49.

母平均に関する𝒕検定の初歩 標本 ある湖で魚Aを100尾釣った 魚Aの体長の平均が約11cmだった 魚A 疑問 魚Aの母集団における平均体長は 10cmより大きいと言えるか?

50.

母平均に関する𝒕検定の初歩 1.母集団についての仮定を置く(正規母集団+無作為標本) モデルを作る 気温やエサの量など無数の要因で体長が変化したことを 正規分布という「数理的表現」で置き換える 『正規母集団から、単純ランダムサンプリングによって、 標本が得られたというモデル』をこれから利用する データから何かを判断する際に、 仮定を置いていることを意識すること 仮定を置くことで判断が楽になる 50

51.

母平均に関する𝒕検定の初歩 単純ランダムサンプリング 母集団分布は正規分布 母集団についての仮定+標本抽出の仮定 →この仮定を置いていることに注意 51

52.

母平均に関する𝒕検定の初歩 1.母集団についての仮定を置く(正規母集団+無作為標本) 2.帰無仮説と対立仮説を設定する 帰無仮説:母集団の平均体長は10cmと等しい ○○は××と等しい 対立仮説:母集団の平均体長は10cmより大きい ○○は××と異なる(大きい/小さい) 帰無仮説との矛盾の度合いを測ることで 自分の主張したいことを支持する 52

53.

母平均に関する𝒕検定の初歩 1.母集団についての仮定を置く(正規母集団+無作為標本) 2.帰無仮説と対立仮説を設定する 3.有意水準を決定する 𝑝値がどれくらい小さい時に、 帰無仮説を棄却するか決める 多くの場合は0.05が使われる 53

54.

母平均に関する𝒕検定の初歩 1.母集団についての仮定を置く(正規母集団+無作為標本) 2.帰無仮説と対立仮説を設定する 3.有意水準を決定する 4.検定統計量を求める(後述) 5. 𝑝値を計算して、 𝑝値が有意水準を下回るか調べる 54

55.

内容 1.統計的仮説検定の復習 2.検定統計量 3.𝒑値 55

56.

検定統計量 今回は検定統計量として𝑡値を使う 信頼区間の計算でも登場した指標 𝑡値が大きければ、有意差があるとみなせる 𝒕値と有意差の関係性は? 56

57.

検定統計量 平均体長が10cmよりも有意に大きいと言える条件は? 案1:平均値が10cmから離れていたら、有意差あり 青は有意差ありそう 赤は有意差なさそう 10 ↓ データのばらつきも 加味すべき 0 平均15 平均15 57

58.

検定統計量 平均体長が10cmよりも有意に大きいと言える条件は? 案2:平均値が10cmから離れ、ばらつきも小さい 青は有意差ありそう 赤は有意差なさそう 10 ↓ サンプルサイズも 加味すべき 0 平均15 平均15 58

59.

検定統計量 平均体長が10cmよりも有意に大きいと言える条件は? 条件1:平均値が10から離れている 条件2:ばらつき(不偏分散)が小さい 条件3:サンプルサイズが大きい 平均値 − 10 平均値の差 𝑡値= = 標準誤差 分散 ÷ サンプルサイズ 𝑡値が大なら有意差ありと主張できそう 59

60.

内容 1.統計的仮説検定の復習 2.検定統計量 3.𝒑値 60

61.

𝒑値 𝑡値が大ならば、有意差がありそう 「𝑡値が大きい」というのは、どのようにして判断する? 例えば、𝑡値が3だったとして、 その数値は大きい? 小さい? 「確率」に基づいて判断する 確率を計算するときに、𝑡分布を使う 61

62.

𝒕値を「大きい」とみなすかどうかの判断 標本の𝒕値が3の時、この𝑡値が大きいとみなせるか判断したい Step1 標本を、正規母集団から得られた無作為標本と想定 母集団分布のパラメータとして、 帰無仮説(母平均=10)が正しいと仮定 →このモデルでは、標本の𝑡値は𝑡分布に従う 62

63.

𝒕値を「大きい」とみなすかどうかの判断 標本の𝒕値が3の時、この𝑡値が大きいとみなせるか判断したい Step1 標本を、正規母集団から得られた無作為標本と想定 母集団分布のパラメータとして、 帰無仮説(母平均=10)が正しいと仮定 →このモデルでは、標本の𝑡値は𝑡分布に従う 𝒕値 𝑡値= 標本の平均値 − 10 標本から計算された不偏分散 ÷ サンプルサイズ 63

64.

𝒕値を「大きい」とみなすかどうかの判断 標本の𝒕値が3の時、この𝑡値が大きいとみなせるか判断したい Step1 標本を、正規母集団から得られた無作為標本と想定 母集団分布のパラメータとして、 帰無仮説(母平均=10)が正しいと仮定 →このモデルでは、標本の𝑡値は𝑡分布に従う Step2 このとき、偶然で𝑡値が3を超える確率を計算する →これが𝑝値 Step3 𝑝値が有意水準(今回は0.05)よりも小さければ、 標本の𝑡値は十分大きいとみなせるので「有意差あり」と判断

65.

母平均に関する𝒕検定の初歩 1.母集団についての仮定を置く(正規母集団+無作為標本) 2.帰無仮説と対立仮説を設定する 3.有意水準を決定する(今回は0.05) 4.検定統計量を求める(今回は𝑡値) 5. 𝑝値を計算して、 𝑝値が有意水準を下回るか調べる 65

66.

統計的仮説検定を利用する注意点 66

67.

統計的仮説検定を利用する注意点 「絶対正しい」結果がわかるわけでは無い 「絶対に母平均は10と異なる」といったことはわからない 判断を間違える可能性もあるんだけど、 「判断を間違える確率をコントロールしたい」 という意図で用いる手法 利用には細心の注意が必要 67

68.

統計的仮説検定を利用する注意点 メモ 2つの過ち 帰無仮説か対立仮説、どちらかが正しいはず 第一種の過誤 帰無仮説が正しいのに、誤って棄却してしまう 第二種の過誤 帰無仮説が間違っているのに、誤って採択してしまう 統計的仮説検定では、第一種の過誤を 犯す確率をコントロールすることを目指す 68