がん遺伝疫学における因果媒介分析の可能性

422 Views

September 08, 22

スライド概要

日本多施設共同コーホート(J-MICC)研究2022年度第1回全体会議 @名古屋|2022年6月29日

profile-image

Jr assoc prof at Tokyo University of Science. PhD in health sciences/MPH at the University of Tokyo. Causal inference in epidemiology/biostatistics.

シェア

埋め込む »CMSなどでJSが使えない場合

各ページのテキスト
1.

2022年6月29日(水)15:30–16:10 @JR ゲートタワー カンファレンス がん遺伝疫学における 因果媒介分析の可能性 日本多施設共同コーホート(J-MICC)研究 2022年度 第1回全体会議 東京理科大学 工学部 情報工学科 篠崎 智大 shinozaki@rs.tus.ac.jp

2.

アウトライン • 「因果」 媒介分析とは • なぜ媒介分析? • なぜ 「因果」 媒介分析? • 因果媒介分析のやり方、結果の見方 • 2021年 「日本疫学会学術総会プレセミナー」 の内容に一部もとづきます • がん遺伝疫学での因果媒介分析の役割 2

3.

「因果」 媒介分析 “causal” mediation analysis • 媒介分析 • 曝露 - 中間変数 - アウトカム の関係を調べる • とくに、直接効果と間接効果への分解 • 従来法 • 回帰係数の組み合わせで 「効果」 を定義 • 「因果」 • 反事実アウトカムにもとづいて各効果を定義 • 例 : 「曝露を受けた場合」 vs. 「受けなかった場合」 • 観察データから求めるための条件と手法を整理 • 推定段階で回帰モデルが使われることもある • 効果の定義と推定手法を切り離した点で従来法とちがう 3

4.

直接効果と間接効果 • 総合効果 • 治療後の全ての変化を通した効果 • 間接効果 • ある機序を介して発現する効果 • 直接効果 • それ以外のあらゆる機序で発現する効果 Total Effect Indirect Effect Statin Cholesterol level Direct Effect CHD 4

5.

MEGA Study Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese • プラバスタチンによる冠動脈イベント CHD(coronary heart disease)予防効果の検証 を目的とした一次予防試験 • 対象 • CHD既往歴がなく総コレステロール値 220~270 mg/dL の中等度高脂血症患者 • 試験デザイン • オープンラベル・ランダム化試験 食事療法単独群 3966名 追跡5年間 ランダム化 食事療法 + プラバスタチン併用群 3866名 CHD 脳卒中 発症を比較 Nakamura et al. Lancet 2006;368:1155-63 5

6.

CHD発症に対する試験結果(ITT解析) Hazard ratio (95% CI) = 0.70 (0.50-0.97) Log-rank P = 0.03 6

7.

プラバスタチンの作用機序(1) • コレステロール低下作用 • HMG-CoA還元酵素を阻害 • 主に肝臓に分布、コレステロール合成を抑制 • LDL (悪玉)コレステロール減少 • HDL (善玉)コレステロール増加 • 総コレステロール値低下により血管内プラーク(肥厚)安定 7

8.

プラバスタチンの作用機序(2) • Statin’s “pleiotropic” effects • 脂質低下以外の「多面的な」作用 • • • • • 抗炎症反応 内皮機能改善 プラーク退縮 抗血栓作用 … • いずれも動脈硬化性疾患(e.g., CHD)のリスク要因を改善 8

9.

CHD抑制に想定する作用機序 • コレステロール低下を介する間接効果 • 作用機序(1) • コレステロール低下を介さない直接効果 • 作用機序(2) pravastatin Indirect Effect cholesterol level CHD Direct Effect • 媒介分析の出番 • コレステロールが下がっていたからと言って間接効果が大きいとは言えない 9

10.

なぜ媒介分析をおこなうのか 1. 曝露 - アウトカム間の関連を説明して理解するため 2. メカニズムにたいする理論やモデルの確証または反証のため 3. 治療法や介入法を改良するため • 間接効果が大きければ、より中間変数をターゲットに据えた治療開発を • 直接効果が大きければ、治療のコンセプトを練り直す必要がある VanderWeele 2015 “Explanation in Causal Inference: Methods for Mediation and Interaction” 10

11.

なぜ媒介分析をおこなうのか(つづき) 4. 曝露 - アウトカム間に総合効果が認められなくても • 曝露から中間変数への影響、中間変数からアウトカムへの影響のいずれか が弱いのではないか • 直接効果と間接効果が逆方向に作用していないか 5. 曝露には介入できないが、中間変数に介入できる状況 • 曝露の悪影響を、当該中間変数を含むメカニズムを不活化してどの程度 抑えられるのか 特にがん遺伝疫学で重要な観点 VanderWeele 2015 “Explanation in Causal Inference: Methods for Mediation and Interaction” 11

12.

従来の媒介分析法(1) • 曝露変数 A • 中間変数 M • 結果変数 Y • 交絡変数 C C A M αM Y αA • Y の回帰モデル E[Y|A, M, C] = α0 + αAA + αMM + αCC 12

13.

従来の媒介分析法(1) • 曝露変数 A • 中間変数 M • 結果変数 Y • 交絡変数 C C A M αM Y αA βA • Y の回帰モデル E[Y|A, M, C] = α0 + αAA + αMM + αCC E[Y|A, C] = β0 + βAA + βCC 13

14.

従来の媒介分析法(1) • “Difference” method E[Y|A, M, C] = α0 + αAA + αMM + αCC E[Y|A, C] = β0 + βAA + βCC • 回帰モデルの係数で 「効果」 を定義 • αA が直接効果 • βA が総合効果 • βA − αA が間接効果 回帰係数の 「解釈」 からの類推による定義にすぎない どういう 「効果」 を求めているのか? 14

15.

従来の媒介分析法(2) • 曝露変数 A • 中間変数 M • 結果変数 Y • 交絡変数 C C A γA M αM Y αA • Y の回帰モデル E[Y|A, M, C] = α0 + αAA + αMM + αCC • M の回帰モデル E[M|A, C] = γ0 + γAA + γCC 15

16.

従来の媒介分析法(2) • “Product” method E[Y|A, M, C] = α0 + αAA + αMM + αCC E[M|A, C] = γ0 + γAA + γCC • 回帰モデルの係数で 「効果」 を定義 • αA が直接効果 • γAαM が間接効果 やはり、どういう意味での 「効果」 なのか? 手法によって 「知りたいもの」 が操作的に決まってしまっている 16

17.

反事実アウトカムモデル • Yia : 曝露が A = a だった場合の対象者 i の潜在アウトカム • 曝露を受けた場合(A = 1): Yi1 • 曝露を受けなかった場合(A = 0): Yi0 • いずれか一方のみ観察され、他方は反事実 Y1 A=1 Y0 A=0 17

18.

反事実アウトカムモデル • Yia : 曝露が A = a だった場合の対象者 i の潜在アウトカム • 曝露を受けた場合(A = 1): Yi1 • 曝露を受けなかった場合(A = 0): Yi0 • いずれか一方のみ観察され、他方は反事実 • 曝露の総合効果 E[Y1] – E[Y0] • E[Y1] : 集団全員が曝露を受けた場合の平均 • E[Y0] : 集団全員が曝露を受けなかった場合の平均 18

19.

反事実アウトカムモデル 対象者 i 曝露 Ai Yi1 Yi0 1 1 1 1 • Yia : 曝露が A = a だった場合の潜在アウトカム 2 1 • 曝露を受けた場合(A = 1): Yi1 3 0 0 • 曝露を受けなかった場合(A = 0): Y 4 i 0 • いずれか一方のみ観察され、他方は反事実 5 1 • 曝露の総合効果 観察アウトカム Yi Causal effect Yi1 – Yi0 1 0 1 0 1 1 0 0 0 0 1 0 0 1 0 1 0 –1 6 0 1 1 1 0 7 0 1 0 0 1 E[Y1] – E[Y0] • E[Y1] : 集団全員が曝露を受けた場合の平均 • E[Y0] : 集団全員が曝露を受けなかった場合の平均 19

20.

中間変数も加えると • Yi a,m : 曝露 A = a, 中間変数 M = m だった場合の潜在アウトカム • (Yi0,0, Yi1,0, Yi0,1, Yi1,1) のうち、観測されるのは1つ • 残りは反事実 同じ A = a 下でも中間変数 Ma の値は 人によって異なる • 総合効果 1 0 E[Y1] – E[Y0] = E[Y1,M ] – E[Y0,M ] • Mia : 曝露 A = a だった場合の潜在中間変数 C A M Y 20

21.

効果の分解 • 総合効果 1 0 E[Y1] – E[Y0] = E[Y1,M ] – E[Y0,M ] 1 0 0 0 = E[Y1,M ] – E[Y1,M ] + E[Y1,M ] – E[Y0,M ] • 自然な間接効果 natural indirect effect • A で変化した M の値(M1 vs. M0)を比較 C A M Y 21

22.

効果の分解 • 総合効果 1 0 E[Y1] – E[Y0] = E[Y1,M ] – E[Y0,M ] 1 0 0 0 = E[Y1,M ] – E[Y1,M ] + E[Y1,M ] – E[Y0,M ] • 自然な直接効果 natural direct effect • M を個人ごとに曝露なし状態での値(M0)に固定して、曝露 A = 1 vs. 0 を比較 C A M Y 22

23.

Koyanagi, et al. Cancer Res 2020;80:1601–10 1 1,M E[Y ] M0 – 0 0,M E[Y ] M1 23

24.

Koyanagi, et al. Cancer Res 2020;80:1601–10 0 1,M E[Y ] M0 – 0 0,M E[Y ] M0 24

25.

Koyanagi, et al. Cancer Res 2020;80:1601–10 1 1,M E[Y ] M0 – 0 1,M E[Y ] M1 25

26.

どうやって求めるのか? 1 0 • 間接効果 : E[Y1,M ] – E[Y1,M ] 0 0 • 直接効果 : E[Y1,M ] – E[Y0,M ] • 絶対に観察できない (cross-world intervention による潜在アウトカム) • 仮定の下で 「識別式」 を導ける • 効果を観察データの確率分布であらわすこと • 仮定 1. 2. 3. 4. 曝露 - 中間変数の交絡変数はすべて測定 曝露 - アウトカムの交絡変数はすべて測定 中間変数 - アウトカムの交絡変数はすべて測定 中間変数 - アウトカムの交絡変数は曝露の影響をうけない 26

27.

直接効果の識別式 0 0 E[Y1,M ] – E[Y0,M ] = Σc Σm {E[Y| A = 1, M = m, C = c] – E[Y| A = 0, M = m, C = c]} ×P(M = m| A = 0, C = c) P(C = c) 以下の回帰モデルを仮定すると E[Y|A, M, C] = α0 + αAA + αMM + αAMAM + αCC E[M|A, C] = γ0 + γAA + γCC = Σc Σm{(α0 + αA + αMm + αAMm + αCc) – (α0 + αMm + αCc)} P(M = m| A = 0, C = c) P(C = c) = Σc Σm{αA + αAMm} P(M = m| A = 0, C = c) P(C = c) = αA + Σc αAM E[M = m| A = 0, C = c] P(C = c) = αA + Σc αAM (γ0 + γCC) P(C = c) = αA + αAM (γ0 + γCE[C]) ☜ 回帰係数の推定値を組み合わせて推定できる 27

28.

間接効果の識別式 1 0 E[Y1,M ] – E[Y1,M ] = Σc Σm E[Y| A = 1, M = m, C = c] ×{P(M = m| A = 1, C = c) – P(M = m| A = 0, C = c)} P(C = c) 以下の回帰モデルを仮定すると E[Y|A, M, C] = α0 + αAA + αMM + αAMAM + αCC E[M|A, C] = γ0 + γAA + γCC = Σc Σm (α0 + αA + αMm + αAMm + αCc) {P(M = m| A = 1, C = c) – P(M = m| A = 0, C = c)} P(C = c) = Σc {Σm(αMm + αAMm) P(M = m| A = 1, C = c) – Σm(αMm + αAMm) P(M = m| A = 0, C = c)}P(C = c) = Σc (αM + αAM){E[M = m| A = 1, C = c] – E[M = m| A = 0, C = c]} P(C = c) = Σc (αM + αAM){(γ0 + γA + γCC) – (γ0 + γCC)} P(C = c) = (αM + αAM)γA ☜ やはり、回帰係数の推定値を組み合わせて推定できる 28

29.

他のいろいろな状況で • M や Y が2値変数でも OK • 線形回帰モデルの代わりに、ロジスティック回帰モデルの回帰係数を 組み合わせて効果を表せる logit P(Y = 1|A, M, C) = α0 + αAA + αMM + αAMAM + αCC logit P(M = 1|A, C) = γ0 + γAA + γCC • 一方が線形モデル、一方がロジスティックモデルなどでもOK • リスク比やオッズ比でも分解OK • オッズ比にはアウトカムが稀な仮定が必要 • 中間変数は稀でなくてもよい 29

30.

いろいろな状況に対応した解析パッケージ • SAS • CAUSALMED プロシジャ (旧 mediation マクロ) • Stata • paramed コマンド • SPSS • Mediation マクロ •R • CMAverse パッケージ ☞ 重み付け法、シミュレーション法にも対応 • mediation パッケージ ☞ 回帰モデルにもとづくシミュレーションで推定 30

31.

アウトライン(再) • 「因果」 媒介分析とは • なぜ媒介分析? • なぜ 「因果」 媒介分析? • 因果媒介分析の基本とやり方 • 2021年 「日本疫学会学術総会プレセミナー」 の内容に一部もとづきます • がん遺伝疫学での因果媒介分析の役割 31

32.

まとめに代えて: がん遺伝疫学での因果媒介分析の役割 • 医学的側面 • 疾患のメカニズム解明 • 遺伝子変異や多型によるリスク把握 • 公衆衛生学的な予防策の観点 • 曝露(遺伝子)への介入は通常できない • 疾患メカニズムに基づくことで、より効果的な中間変数への介入をめざす • 個人内の仮想状況(M1 vs. M0)を参照した中間変数の効果の提示 • 例 : 「変異がなかった場合の飲酒量だったとしたら、リスクはこれだけ上がりますよ」 32

33.

今後の展望と課題 • 様々な組み合わせによる RQ • Exposure (Genome)-wide • Mediator-wide • Outcome-wide • 多重性にはどのように向き合うか? • 複数の中間変数の同時考慮 • 因果媒介分析では challenging なテーマ • 遺伝子変異や多型が中間変数の交絡変数にも影響する場合 • 厳密に効果の分解は行えないが、技術的には何とかなる • 結果をいかに解釈していくか 33